
CASE

STUDY

@Xfactr.ai

 Migrating Application to
Azure Landing Zone with
Ingress Implementation

@Xfactr.ai

Business Needs/Background

Introduction Our application, Spec-Builder, is a comprehensive solution built
using C#, SQL, TypeScript, JavaScript, npm, and Angular. Initially hosted on
Azure, the architecture lacked a structured landing zone, leading to challenges in
scalability, security, and cost management. To address these issues, we decided
to migrate to an Azure landing zone for a more robust, scalable, and secure
infrastructure.

Objectives

• Scalability: Enhance the application's ability to handle increased loads.
 • Security: Implement stringent security measures to protect data and services.
• Cost-Effectiveness: Optimize resource usage to reduce operational costs.
• Integration: Seamlessly integrate with multiple services like SAS, Logz.io, and
others

@Xfactr.ai

 Migration Strategy
 1. Assessment: Evaluated the current infrastructure and identified
components for migration.

2. Planning: Developed a detailed migration plan, including timelines and
resource allocation.

 3. Azure Landing Zone Selection: Chose an appropriate Azure landing zone to
meet our scalability and security needs. 4. Infrastructure as Code (IaC): Utilized
scripts to automate the creation of infrastructure components.

 5. Ingress Implementation: Integrated Azure Application Gateway and Azure
Front Door for managing ingress traffic.

6. Testing: Conducted thorough testing to ensure the migrated application
functioned as expected.

7. Deployment: Deployed the application to the new Azure landing zone.

@Xfactr.ai

Ingress Implementation • Ingress Definition: A collection of rules that allow inbound
connections to reach cluster services.

 • Tools and Services:

o Azure Application Gateway: Managed load balancing and secure ingress traffic.
 o Azure Front Door: Provided global load balancing and fast failover.

Configuration Process:

 • Configured the Application Gateway with necessary routing rules and SSL
termination.

• Set up Azure Front Door for global traffic management and failover.

• Integrated with Kubernetes for dynamic service discovery and routing.

@Xfactr.ai

 Challenges
• Integration with SAAS and other tools: Ensured seamless data flow and logging.

 • Firewall Configuration: Opened necessary ports and configured firewall rules.

 • Scripted Infrastructure Creation: Automated the creation of infrastructure
components using scripts.

• IP Shortage: Addressed IP shortage issues by implementing ingress solutions.

• General Workflow Dispatch: Utilized GitHub Actions for continuous deployment
and integration.

• Onboarding New Countries: Collaborated with local teams to ensure compliance
with regulations, translated content, and adapted features to meet local user
needs.

@Xfactr.ai

 Teamwork
Throughout the migration process, our team worked collaboratively to address
various issues. Regular stand-up meetings fostered open communication, allowing
us to share challenges and brainstorm solutions together. Each team member
contributed unique insights, and we leveraged our collective expertise to
overcome technical hurdles, streamline the onboarding process for new countries,
and enhance application performance.

 Results
• Performance: Significant improvements in application performance and load
handling.

• Security: Enhanced security measures with better access controls and
monitoring.

 • Cost Savings: Optimized resource usage, leading to reduced operational costs.

@Xfactr.ai

 Lessons Learned

• Automation: Automating infrastructure creation and configuration
significantly reduces errors and deployment time.

• Testing: Comprehensive testing is crucial to identify and resolve issues early in
the migration process.

• Documentation: Maintaining detailed documentation aids troubleshooting and
future migrations.

• Time Management: The migration process took a year to overcome challenges
and complete successfully.

@Xfactr.ai

 Conclusion

The migration to an Azure landing zone with ingress implementation was a
success, resulting in a more scalable, secure, and cost-effective application.
The structured approach and use of automation tools played key roles in the
smooth transition and improved performance. The project took a year to
complete, addressing various challenges such as IP shortage and integration
with multiple services.

@Xfactr.ai

Value Delivered to
the Customer

For more information, write
to us at hello@xfactr.ai

At XFactr™.AI, we’re revolutionizing industries with our bold 3D approach to digital
transformation:
� Digital Full-stack Development
� Data Science & AI ML
� DevOps & Cloud

Data is our backbone, and AI is our superpower. We blend traditional digital technologies
with cutting-edge AI to create future-ready solutions that drive real impact. With a
proven track record of building and exiting successful companies, our leadership brings
decades of expertise in digital tech and AI to inspire trust, innovation, and results.

Whether empowering global enterprises or fueling disruptive startups, we turn bold
ideas into intelligent products. Join us—we’re on track to become the next unicorn by
2040! 🚀 People might call us mad, but we're focused, ambitious, and determined to
make it happen.

About XFactr.AI

@Xfactr.ai

